Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
2.
Nat Commun ; 14(1): 5399, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669938

RESUMO

Memory consolidation after learning involves spontaneous, brain-wide network reorganization during rest and sleep, but how this is achieved is still poorly understood. Current theory suggests that the hippocampus is pivotal for this reshaping of connectivity. Using fMRI in male mice, we identify that a different set of spontaneous networks and their hubs are instrumental in consolidating memory during post-learning rest. We found that two types of spatial memory training invoke distinct functional connections, but that a network of the sensory cortex and subcortical areas is common for both tasks. Furthermore, learning increased brain-wide network integration, with the prefrontal, striatal and thalamic areas being influential for this network-level reconfiguration. Chemogenetic suppression of each hub identified after learning resulted in retrograde amnesia, confirming the behavioral significance. These results demonstrate the causal and functional roles of resting-state network hubs in memory consolidation and suggest that a distributed network beyond the hippocampus subserves this process.


Assuntos
Consolidação da Memória , Masculino , Animais , Camundongos , Humanos , Encéfalo , Causalidade , Treino Cognitivo , Memória Espacial
4.
Sci Data ; 10(1): 195, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031232

RESUMO

We describe the Queensland Twin Adolescent Brain (QTAB) dataset and provide a detailed methodology and technical validation to facilitate data usage. The QTAB dataset comprises multimodal neuroimaging, as well as cognitive and mental health data collected in adolescent twins over two sessions (session 1: N = 422, age 9-14 years; session 2: N = 304, 10-16 years). The MRI protocol consisted of T1-weighted (MP2RAGE), T2-weighted, FLAIR, high-resolution TSE, SWI, resting-state fMRI, DWI, and ASL scans. Two fMRI tasks were added in session 2: an emotional conflict task and a passive movie-watching task. Outside of the scanner, we assessed cognitive function using standardised tests. We also obtained self-reports of symptoms for anxiety and depression, perceived stress, sleepiness, pubertal development measures, and risk and protective factors. We additionally collected several biological samples for genomic and metagenomic analysis. The QTAB project was established to promote health-related research in adolescence.


Assuntos
Desenvolvimento do Adolescente , Encéfalo , Adolescente , Criança , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Estudos Longitudinais , Imageamento por Ressonância Magnética , Queensland , Gêmeos
5.
Proc Natl Acad Sci U S A ; 120(5): e2202435120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36693103

RESUMO

The neural circuit of the brain is organized as a hierarchy of functional units with wide-ranging connections that support information flow and functional connectivity. Studies using MRI indicate a moderate coupling between structural and functional connectivity at the system level. However, how do connections of different directions (feedforward and feedback) and regions with different excitatory and inhibitory (E/I) neurons shape the hemodynamic activity and functional connectivity over the hierarchy are unknown. Here, we used functional MRI to detect optogenetic-evoked and resting-state activities over a somatosensory pathway in the mouse brain in relation to axonal projection and E/I distribution. Using a highly sensitive ultrafast imaging, we identified extensive activation in regions up to the third order of axonal projections following optogenetic excitation of the ventral posteriomedial nucleus of the thalamus. The evoked response and functional connectivity correlated with feedforward projections more than feedback projections and weakened with the hierarchy. The hemodynamic response exhibited regional and hierarchical differences, with slower and more variable responses in high-order areas and bipolar response predominantly in the contralateral cortex. Electrophysiological recordings suggest that these reflect differences in neural activity rather than neurovascular coupling. Importantly, the positive and negative parts of the hemodynamic response correlated with E/I neuronal densities, respectively. Furthermore, resting-state functional connectivity was more associated with E/I distribution, whereas stimulus-evoked effective connectivity followed structural wiring. These findings indicate that the structure-function relationship is projection-, cell-type- and hierarchy-dependent. Hemodynamic transients could reflect E/I activity and the increased complexity of hierarchical processing.


Assuntos
Conectoma , Acoplamento Neurovascular , Camundongos , Animais , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Hemodinâmica , Acoplamento Neurovascular/fisiologia , Imageamento por Ressonância Magnética , Vias Neurais/fisiologia , Rede Nervosa/fisiologia , Conectoma/métodos
6.
bioRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38168269

RESUMO

The ability to modulate specific neural circuits and simultaneously visualize and measure brain activity with MRI would greatly impact understanding brain function in health and disease. The combination of neurostimulation methods and MRI in animal models have already shown promise in elucidating fundamental mechanisms associated with brain activity. We developed an innovative magnetogenetics neurostimulation technology that can trigger neural activity through magnetic fields. Similar to other genetic-based neuromodulation methods, magnetogenetics offers cell-, area- and temporal-specific control of neural activity. However, the magnetogenetics protein (Electromagnetic Preceptive Gene (EPG)) are activated by non-invasive magnetic fields, providing a unique way to target neural circuits by the MRI gradients while simultaneously measure their effect on brain activity. EPG was expressed in rat's visual cortex and the amplitude of low-frequency fluctuation (fALFF), resting-state functional connectivity (FC), and sensory activation was measured using a 7T MRI. The results demonstrate that EPG-expressing rats had significantly higher signal fluctuations in the visual areas and stronger FC in sensory areas consistent with known anatomical visuosensory and visuomotor connections. This new technology complements the existing neurostimulation toolbox and provides a mean to study brain function in a minimally-invasive way which was not possible previously.

7.
Neurobiol Aging ; 117: 24-32, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35640461

RESUMO

Degeneration of cholinergic neurons in the basal forebrain (BF) contributes to cognitive impairment in Alzheimer's disease (AD) and other disorders. Atrophy of BF volume measured by structural MRI is thought to represent the loss of cholinergic neurons in this structure. As there are multiple types of neurons in the BF as well as glia and axons, whether this MRI measure actually reflects the change of cholinergic neurons has not been verified. In this study, we assessed BF cholinergic neuron number by histological counts and compared with the volume measurements by in vivo MRI in 3xTg mice, a model of familial AD. Both manual and template-based segmentation revealed atrophy of the medial septum (MS), consistent with a significant reduction in cholinergic neuron number. However, MRI-measured volume reduction did not correlate with the reduced cholinergic neuron number. To directly test whether specific loss of cholinergic neurons results in BF atrophy, we selectively ablated the cholinergic neurons in the MS. However, no detectable change in MRI volume was observed between lesioned and unlesioned mice. The results indicate that although loss of cholinergic neurons within the BF likely contributes to volume loss, this volume change cannot be taken as a direct biomarker of cholinergic neuron number.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Animais , Atrofia/patologia , Prosencéfalo Basal/diagnóstico por imagem , Prosencéfalo Basal/patologia , Colinérgicos , Neurônios Colinérgicos/patologia , Modelos Animais de Doenças , Imageamento por Ressonância Magnética/métodos , Camundongos
8.
Sci Rep ; 12(1): 8578, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595829

RESUMO

Magnetic Resonance Imaging (MRI) has been widely used to acquire structural and functional information about the brain. In a group- or voxel-wise analysis, it is essential to correct the bias field of the radiofrequency coil and to extract the brain for accurate registration to the brain template. Although automatic methods have been developed, manual editing is still required, particularly for echo-planar imaging (EPI) due to its lower spatial resolution and larger geometric distortion. The needs of user interventions slow down data processing and lead to variable results between operators. Deep learning networks have been successfully used for automatic postprocessing. However, most networks are only designed for a specific processing and/or single image contrast (e.g., spin-echo or gradient-echo). This limitation markedly restricts the application and generalization of deep learning tools. To address these limitations, we developed a deep learning network based on the generative adversarial net (GAN) to automatically correct coil inhomogeneity and extract the brain from both spin- and gradient-echo EPI without user intervention. Using various quantitative indices, we show that this method achieved high similarity to the reference target and performed consistently across datasets acquired from rodents. These results highlight the potential of deep networks to integrate different postprocessing methods and adapt to different image contrasts. The use of the same network to process multimodality data would be a critical step toward a fully automatic postprocessing pipeline that could facilitate the analysis of large datasets with high consistency.


Assuntos
Aprendizado Profundo , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética
9.
iScience ; 24(12): 103450, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34877505

RESUMO

We have shown that the improvement in hippocampal-based learning in aged mice following physical exercise observed is dependent on neurogenesis in the dentate gyrus (DG) and is regulated by changes in growth hormone levels. The changes in neurocircuitry, however, which may underlie this improvement, remain unclear. Using in vivo multimodal magnetic resonance imaging to track changes in aged mice exposed to exercise, we show the improved spatial learning is due to enhanced DG connectivity, particularly the strengthening of the DG-Cornu Ammonis 3 and the DG-medial entorhinal cortex connections in the dorsal hippocampus. Moreover, we provide evidence that these changes in circuitry are dependent on neurogenesis since they were abrogated by ablation of newborn neurons following exercise. These findings identify the specific changes in hippocampal circuitry that underlie the cognitive improvements resulting from physical activity and show that they are dependent on the activation of neurogenesis in aged animals.

10.
Front Hum Neurosci ; 15: 692304, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335210

RESUMO

Brain-computer interface-assisted motor imagery (MI-BCI) or transcranial direct current stimulation (tDCS) has been proven effective in post-stroke motor function enhancement, yet whether the combination of MI-BCI and tDCS may further benefit the rehabilitation of motor functions remains unknown. This study investigated brain functional activity and connectivity changes after a 2 week MI-BCI and tDCS combined intervention in 19 chronic subcortical stroke patients. Patients were randomized into MI-BCI with tDCS group and MI-BCI only group who underwent 10 sessions of 20 min real or sham tDCS followed by 1 h MI-BCI training with robotic feedback. We derived amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) from resting-state functional magnetic resonance imaging (fMRI) data pre- and post-intervention. At baseline, stroke patients had lower ALFF in the ipsilesional somatomotor network (SMN), lower ReHo in the contralesional insula, and higher ALFF/Reho in the bilateral posterior default mode network (DMN) compared to age-matched healthy controls. After the intervention, the MI-BCI only group showed increased ALFF in contralesional SMN and decreased ALFF/Reho in the posterior DMN. In contrast, no post-intervention changes were detected in the MI-BCI + tDCS group. Furthermore, higher increases in ALFF/ReHo/FC measures were related to better motor function recovery (measured by the Fugl-Meyer Assessment scores) in the MI-BCI group while the opposite association was detected in the MI-BCI + tDCS group. Taken together, our findings suggest that brain functional re-normalization and network-specific compensation were found in the MI-BCI only group but not in the MI-BCI + tDCS group although both groups gained significant motor function improvement post-intervention with no group difference. MI-BCI and tDCS may exert differential or even opposing impact on brain functional reorganization during post-stroke motor rehabilitation; therefore, the integration of the two strategies requires further refinement to improve efficacy and effectiveness.

11.
Sci Rep ; 11(1): 8442, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875691

RESUMO

Stroke leads to both regional brain functional disruptions and network reorganization. However, how brain functional networks reconfigure as task demand increases in stroke patients and whether such reorganization at baseline would facilitate post-stroke motor recovery are largely unknown. To address this gap, brain functional connectivity (FC) were examined at rest and motor tasks in eighteen chronic subcortical stroke patients and eleven age-matched healthy controls. Stroke patients underwent a 2-week intervention using a motor imagery-assisted brain computer interface-based (MI-BCI) training with or without transcranial direct current stimulation (tDCS). Motor recovery was determined by calculating the changes of the upper extremity component of the Fugl-Meyer Assessment (FMA) score between pre- and post-intervention divided by the pre-intervention FMA score. The results suggested that as task demand increased (i.e., from resting to passive unaffected hand gripping and to active affected hand gripping), patients showed greater FC disruptions in cognitive networks including the default and dorsal attention networks. Compared to controls, patients had lower task-related spatial similarity in the somatomotor-subcortical, default-somatomotor, salience/ventral attention-subcortical and subcortical-subcortical connections, suggesting greater inefficiency in motor execution. Importantly, higher baseline network-specific FC strength (e.g., dorsal attention and somatomotor) and more efficient brain network reconfigurations (e.g., somatomotor and subcortical) from rest to active affected hand gripping at baseline were related to better future motor recovery. Our findings underscore the importance of studying functional network reorganization during task-free and task conditions for motor recovery prediction in stroke.


Assuntos
Córtex Motor/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Encéfalo/fisiopatologia , Interfaces Cérebro-Computador , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Atividade Motora , Vias Neurais/fisiopatologia , Plasticidade Neuronal/fisiologia , Reabilitação do Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Extremidade Superior/fisiopatologia
12.
Acta Neuropathol Commun ; 9(1): 9, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407930

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) represent two ends of the same disease spectrum of adult-onset neurodegenerative diseases that affect the motor and cognitive functions, respectively. Multiple common genetic loci such as fused in sarcoma (FUS) have been identified to play a role in ALS and FTD etiology. Current studies indicate that FUS mutations incur gain-of-toxic functions to drive ALS pathogenesis. However, how the disease-linked mutations of FUS affect cognition remains elusive. Using a mouse model expressing an ALS-linked human FUS mutation (R514G-FUS) that mimics endogenous expression patterns, we found that FUS proteins showed an age-dependent accumulation of FUS proteins despite the downregulation of mouse FUS mRNA by the R514G-FUS protein during aging. Furthermore, these mice developed cognitive deficits accompanied by a reduction in spine density and long-term potentiation (LTP) within the hippocampus. At the physiological expression level, mutant FUS is distributed in the nucleus and cytosol without apparent FUS aggregates or nuclear envelope defects. Unbiased transcriptomic analysis revealed a deregulation of genes that cluster in pathways involved in nonsense-mediated decay, protein homeostasis, and mitochondrial functions. Furthermore, the use of in vivo functional imaging demonstrated widespread reduction in cortical volumes but enhanced functional connectivity between hippocampus, basal ganglia and neocortex in R514G-FUS mice. Hence, our findings suggest that disease-linked mutation in FUS may lead to changes in proteostasis and mitochondrial dysfunction that in turn affect brain structure and connectivity resulting in cognitive deficits.


Assuntos
Esclerose Lateral Amiotrófica/genética , Encéfalo/metabolismo , Disfunção Cognitiva/genética , Mitocôndrias/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido/genética , Proteostase/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Encéfalo/fisiopatologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Transgênicos , Teste do Labirinto Aquático de Morris , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Teste de Campo Aberto , Proteína FUS de Ligação a RNA/genética
13.
Methods Mol Biol ; 2216: 443-453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33476016

RESUMO

A noninvasive, robust, and reproducible method to measure renal perfusion is important to understand the physiology of kidney. Arterial spin labeling (ASL) MRI technique labels the endogenous blood water as freely diffusible tracers to measure perfusion quantitatively without relying on exogenous contrast agent. Therefore, it alleviates the safety concern involving gadolinium chelates. To obtain quantitative tissue perfusion information is particularly relevant for multisite and longitudinal imaging of living subjects.This chapter is based upon work from the PARENCHIMA COST Action, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol chapter is complemented by two separate chapters describing the basic concept and data analysis.


Assuntos
Artérias/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Rim/irrigação sanguínea , Rim/fisiologia , Imageamento por Ressonância Magnética/métodos , Circulação Renal , Marcadores de Spin , Animais , Camundongos , Camundongos Endogâmicos C57BL , Monitorização Fisiológica , Software
14.
Methods Mol Biol ; 2216: 655-666, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33476029

RESUMO

The signal intensity differences measured by an arterial-spin-labelling (ASL) magnetic resonance imaging (MRI) experiment are proportional to the local perfusion, which can be quantified with kinetic modeling. Here we present a step-by-step tutorial for the data post-processing needed to calculate an ASL perfusion map. The process of developing an analysis software is described with the essential program code, which involves nonlinear fitting a tracer kinetic model to the ASL data. Key parameters for the quantification are the arterial transit time (ATT), which is the time the labeled blood takes to flow from the labeling area to the tissue, and the tissue T1. As ATT varies with vasculature, physiology, anesthesia and pathology, it is recommended to measure it using multiple delay times. The tutorial explains how to analyze ASL data with multiple delay times and a T1 map for quantification.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This analysis protocol chapter is complemented by two separate chapters describing the basic concept and experimental procedure.


Assuntos
Artérias/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Rim/fisiologia , Imageamento por Ressonância Magnética/métodos , Monitorização Fisiológica/métodos , Software , Marcadores de Spin , Animais , Rim/irrigação sanguínea , Perfusão
15.
NMR Biomed ; 34(1): e4398, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32839964

RESUMO

Diffusion tensor imaging (DTI) of the brain provides essential information on the white matter integrity and structural connectivity. However, it suffers from a low signal-to-noise ratio (SNR) and requires a long scan time to achieve high spatial and/or diffusion resolution and wide brain coverage. With recent advances in parallel and simultaneous multislice (multiband) imaging, the SNR efficiency has been improved by reducing the repetition time (TR ). However, due to the limited number of RF coil channels available on preclinical MRI scanners, simultaneous multislice acquisition has not been practical. In this study, we demonstrate the ability of multiband DTI to acquire high-resolution data of the mouse brain with 84 slices covering the whole brain in 0.2 mm isotropic resolution without a coil array at 9.4 T. Hadamard-encoding four-band pulses were used to acquire four slices simultaneously, with the reduction in the TR maximizing the SNR efficiency. To overcome shot-to-shot phase variations, Hadamard decoding with a self-calibrated phase was developed. Compared with single-band DTI acquired with the same scan time, the multiband DTI leads to significantly increased SNR by 40% in the white matter. This SNR gain resulted in reduced variations in fractional anisotropy, mean diffusivity, and eigenvector orientation. Furthermore, the cerebrospinal fluid signal was attenuated, leading to reduced free-water contamination. Without the need for a high-density coil array or parallel imaging, this technique enables highly efficient preclinical DTI that will facilitate connectome studies.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar , Animais , Anisotropia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Razão Sinal-Ruído , Substância Branca/diagnóstico por imagem
16.
BMJ Open ; 9(4): e025568, 2019 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-31005923

RESUMO

INTRODUCTION: Inflammatory bowel disease (IBD) is a chronic autoinflammatory disease of the gastrointestinal tract with peak age of onset during adolescence and young adulthood. Adolescents and young adults (AYAs) with IBD experience higher depression rates compared with peers who are well or have other chronic conditions. Mindfulness-based interventions are of particular interest because of their potential to improve both the course of IBD and depression. METHODS AND ANALYSIS: This study is a parallel design, single-blind, pilot randomised controlled trial (RCT) of mindfulness-based cognitive therapy (MBCT) in AYAs with IBD and depression. The trial aims to recruit 64 participants who will be randomly allocated to MBCT or treatment as usual. The primary outcome measure is the depression subscale score from the Depression, Anxiety and Stress Scale. Secondary outcomes include anxiety, stress, post-traumatic growth, IBD-related quality of life, illness knowledge, medication adherence, mindfulness, IBD activity, inflammatory markers, microbiome and brain neuroconnectivity changes. All outcomes other than neuroimaging will be collected at three time points: at baseline, at therapy completion and at 20 weeks. Neuroimaging will be conducted at baseline and at therapy completion. Mixed-effects linear and logistic regression modelling will be used to analyse continuous and dichotomous outcomes, respectively. Participants' experiences will be explored through focus groups, and thematic analysis will be used to generate relevant themes. ETHICS AND DISSEMINATION: The protocol has been approved by the Mater Hospital Human Research Ethics Committee (HREC) and University of Queensland HREC. Trial findings will be published in peer-reviewed journals and will be presented at scientific conferences. TRIAL REGISTRATION NUMBER: ACTRN12617000876392, U1111-1197-7370; Pre-results.


Assuntos
Depressão/terapia , Doenças Inflamatórias Intestinais/terapia , Atenção Plena/métodos , Adolescente , Adulto , Depressão/complicações , Feminino , Humanos , Doenças Inflamatórias Intestinais/complicações , Masculino , Projetos Piloto , Ensaios Clínicos Controlados Aleatórios como Assunto , Método Simples-Cego , Adulto Jovem
17.
Neuroimage ; 195: 48-58, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30910726

RESUMO

Increasing spatial and temporal resolutions of functional MRI (fMRI) measurement has been shown to benefit the study of neural dynamics and functional interaction. However, acceleration of rodent brain fMRI using parallel and simultaneous multi-slice imaging techniques is hampered by the lack of high-density phased-array coils for the small brain. To overcome this limitation, we adapted phase-offset multiplanar and blipped-controlled aliasing echo planar imaging (EPI) to enable simultaneous multi-slice fMRI of the mouse brain using a single loop coil on a 9.4T scanner. Four slice bands of 0.3 × 0.3 × 0.5 mm3 resolution can be simultaneously acquired to cover the whole brain at a temporal resolution of 300 ms or the whole cerebrum in 150 ms. Instead of losing signal-to-noise ratio (SNR), both spatial and temporal SNR can be increased due to the increased k-space sampling compared to a standard single-band EPI. Task fMRI using a visual stimulation shows close to 80% increase of z-score and 4 times increase of activated area in the visual cortex using the multiband EPI due to the highly increased temporal samples. Resting-state fMRI shows reliable detection of bilateral connectivity by both single-band and multiband EPI, but no significant difference was found. Without the need of a dedicated hardware, we have demonstrated a practical method that can enable unparallelly fast whole-brain fMRI for preclinical studies. This technique can be used to increase sensitivity, distinguish transient response or acquire high spatiotemporal resolution fMRI.


Assuntos
Encéfalo/fisiologia , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Neuroimage ; 188: 694-709, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30593905

RESUMO

Functional MRI (fMRI) has become an important translational tool for studying brain activity and connectivity in animal models and humans. For accurate and reliable measurement of functional connectivity, nuisance removal strategies developed for human brain, such as regressing motion parameters, cerebrospinal fluid (CSF)/white matter-derived signals and the global signal, have been applied to rodent. However, due to the very different anatomy, with the majority of the rodent brain being gray matter, and experimental conditions, in which animals are anesthetized and head-fixed, these methods may not be suitable for rodent fMRI. In this study, we assessed various nuisance regression methods and the effects of motion correction on a large dataset of both task and resting fMRI of anesthetized rat brain. Sensitivity and specificity were assessed in the somatosensory pathway under forepaw stimulation and resting state. Reproducibility at various sample sizes was simulated by randomly subsampling the dataset. To overcome the difficulty in extracting nuisance from the brain, a method using principal components estimated from tissues outside the brain was evaluated. Our results showed that neither detrend, motion correction, motion regression nor CSF signal regression could improve specificity despite increasing temporal signal-to-noise ratios. Although global signal regression increased the specificity of task activation and functional connectivity, the sensitivity and connectivity strength was drastically reduced, likely due to its strong correlation with the cortical signal. Motion parameters also correlated with task activation and the global signal, indicating that motion correction detected intensity variations in the brain. The nuisance estimated from tissues outside the brain produced a moderate improvement in specificity. In conclusion, nuisance removal suitable for human fMRI may not be optimal for rodents. While further development is needed, estimating nuisance from tissues outside the brain may be an alternative.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma/normas , Potenciais Somatossensoriais Evocados/fisiologia , Imageamento por Ressonância Magnética/normas , Córtex Somatossensorial/fisiologia , Animais , Artefatos , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Ratos , Ratos Wistar , Córtex Somatossensorial/diagnóstico por imagem
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 1050-1053, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440571

RESUMO

Mapping the brain alterations post stroke and post intervention is important for rehabilitation therapy development. Previous work has shown changes in functional connectivity based on resting-state fMRI, structural connectivity derived from diffusion MRI and perfusion as a result of brain-computer interface-assisted motor imagery (MI-BCI) and transcranial direct current stimulation (tDCS) in upper-limb stroke rehabilitation. Besides functional connectivity, regional amplitude of local low-frequency fluctuations (ALFF) may provide complementary information on the underlying neural mechanism in disease. Yet, findings on spontaneous brain activity during resting-state in stroke patients after intervention are limited and inconsistent. Here, we sought to investigate the different brain alteration patterns induced by tDCS compared to MI-BCI for upper-limb rehabilitation in chronic stroke patients using resting-state fMRI-based ALFF method. Our results suggested that stroke patients have lower ALFF in the ipsilesional somatomotor network compared to controls at baseline. Increased ALFF at contralesional somatomotor network and alterations in higher-level cognitive networks such as the default mode network (DMN) and salience networks accompany motor recovery after intervention; though the MI-BCI alone group and MI-BCI combined with tDCS group exhibit differential patterns.


Assuntos
Interfaces Cérebro-Computador , Encéfalo , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos
20.
NMR Biomed ; 31(12): e4007, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30260561

RESUMO

Recent studies suggest that neurodegenerative diseases could affect brain structure and function in disease-specific network patterns; however, how spontaneous activity affects structural covariance network (SC) is not clear. We hypothesized that hyper-excitability in Huntington disease (HD) disrupts the coordinated structural and functional connectivity, and treatment with memantine helps to reduce excitotoxicity and normalize the connectivity. MRI was conducted to measure somatosensory activation, resting-state functional-connectivity (rsFC), SC, amplitude of low frequency fluctuation (ALFF) and ALFF covariance (ALFFC) in the YAC128 mouse model of HD. We found somatosensory activation was unchanged but the subcortical ALFF was increased in HD mice, indicating subcortical but not cortical hyperactivity. The reduced sensorimotor rsFC but spared hippocampal and default mode networks in the HD mice was consistent with the more pronounced impairment in motor function compared with cognitive performance. The disease suppressed SC globally and reduced ALFFC in the basal ganglia network as well as its anti-correlation with the default mode network. By comparing these connectivity measures, we found that the originally coupled rsFC-SC relationship was impaired whereas SC-ALFFC correlation was increased by HD, suggesting disease facilitated covariation of brain volume and activity amplitude but not neural synchrony. The comparison with mono-synaptic axonal projection supports the hypothesis that rsFC, but not SC or ALFFC, is highly dependent on structural connectivity under healthy conditions. Treatment with memantine had a strong effect on normalizing the SC and reducing ALFF while slightly increasing other connectivity measures and restoring the rsFC-SC coupling, which is consistent with its effect on alleviating hyper-excitability and improving the coordinated neural growth. These results indicate that HD affects the cerebral structure-function relationship which could be partially reverted by NMDA antagonism. These connectivity measures provide unique insights into pathological and pharmaceutical effects in brain circuitry, and could be translatable biomarkers for evaluating drug effect and refining its efficacy.


Assuntos
Conectoma , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Imageamento por Ressonância Magnética , Animais , Axônios/patologia , Comportamento Animal , Cognição , Modelos Animais de Doenças , Estimulação Elétrica , Humanos , Masculino , Memantina , Camundongos , Atividade Motora , Rede Nervosa/fisiopatologia , Oxigênio/sangue , Descanso , Córtex Somatossensorial/patologia , Córtex Somatossensorial/fisiopatologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...